
The Road to Full Automation: How We

Implemented Continuous Delivery at Signal
 Tomasz Klepacki

10/10/2024

2

The Signal Group

3

Signal Ocean Platform

• Fleet monitoring

• Freight market forecasting

• Shipping route optimization

• Data analysis

• Decision support

4

Signal Ocean Platform - Architecture

• Microservice architecture – BFF – Backend for Frontend – .NET or Python based API

• Frontend - ReactJS

• The entire infrastructure, both production and development, is based on Azure Cloud

5

Testing and CI/CD process at Signal – 2020

6

Why wasn't it enough?

• No separate environment for testing a given PR for a specific task - (development tests)

7

Why wasn't it enough?

• No separate environment for testing a given PR for a specific task - (development tests)

• No UI tests as part of the CI process - performed only on demand and slow

8

Why wasn't it enough?

• No separate environment for testing a given PR for a specific task - (development tests)

• No UI tests as part of the CI process - performed only on demand and slow

• No direct correlation between a given error in tests and a specific change in the code

9

Why wasn't it enough?

• No separate environment for testing a given PR for a specific task - (development tests)

• No UI tests as part of the CI process - performed only on demand and slow

• No direct correlation between a given error in tests and a specific change in the code

• Overall low UI test coverage, no FEBE API layer tests (Integration tests) - lack of trust in UI tests

10

Why wasn't it enough?

• No separate environment for testing a given PR for a specific task - (development tests)

• No UI tests as part of the CI process - performed only on demand and slow

• No direct correlation between a given error in tests and a specific change in the code

• Overall low UI test coverage, no FEBE API layer tests (Integration tests) - lack of trust in UI tests

• TestCafe as a tool did not fully meet our expectations

11

Why wasn't it enough?

• No separate environment for testing a given PR for a specific task - (development tests)

• No UI tests as part of the CI process - performed only on demand and slow

• No direct correlation between a given error in tests and a specific change in the code

• Overall low UI test coverage, no FEBE API layer tests (Integration tests) - lack of trust in UI tests

• TestCafe as a tool did not fully meet our expectations

• No monitoring of the state of dependent services - Backend for Frontend, Backend Service

12

Why wasn't it enough?

• No separate environment for testing a given PR for a specific task - (development tests)

• No UI tests as part of the CI process - performed only on demand and slow

• No direct correlation between a given error in tests and a specific change in the code

• Overall low UI test coverage, no FEBE API layer tests (Integration tests) - lack of trust in UI tests

• TestCafe as a tool did not fully meet our expectations

• No monitoring of the state of dependent services - Backend for Frontend, Backend Service

• Release took place only once a week. Need to create a "release package" - a list of tasks merged to the

release branch - high cost of maintaining this phase of the process, many test iterations

13

Why wasn't it enough?

• No separate environment for testing a given PR for a specific task - (development tests)

• No UI tests as part of the CI process - performed only on demand and slow

• No direct correlation between a given error in tests and a specific change in the code

• Overall low UI test coverage, no FEBE API layer tests (Integration tests) - lack of trust in UI tests

• TestCafe as a tool did not fully meet our expectations

• No monitoring of the state of dependent services - Backend for Frontend, Backend Service

• Release took place only once a week. Need to create a "release package" - a list of tasks merged to the

release branch - high cost of maintaining this phase of the process, many test iterations

• Chaos - fixes added to the release branch, bypassing the unstable branch - frequent backmerges.

14

Signal – New UI Testing Tool Evaluation

15

Signal Ocean Platform UI Tests with TestCafe

• Hard to debug

• No solution for mocking the API layer of web applications

• Non-optimal test parallelization mechanism

16

State of Testing Report 2021

17

UI Testing in the CI/CD process

Version
Control Build Unit

Tests Deploy Automated
Tests

Deploy to
Production

• FEBE – 220 tests

• Mocked (Visual/Regression) - 620 tests

18

UI Test – Increasing functionality coverage with tests

Traceability Matrix

19

UI Tests – Number of tests and test execution speed

PR Runner UI Tests/Slot Swap UI Tests:
• UI Mock Tests: 620 tests run in 14 min

• UI FEBE Sanity Tests: 22 tests run in 4 min

Other (run once a day on Unstable environment)
• UI Unstable Mock Tests: 620 tests run in 14 min

• UI FEBE Tests: 220 tests run in 11 min

UI Test Type No. of Test
Runs

UI Test Mock - PR Runner 67

UI Test FEBE Sanity - PR Runner 46

UI Test FEBE Sanity - Slot Swap Runner 72

UI Test Mock - Unstable Morning Run 30

UI Test FEBE - Unstable Morning Run 30

245 Test Runs - November

20

Two levels of test execution parallelism

• Level I: Simultaneous execution on 4 VMs (2 x Azure Cloud + 2 x VMWare) – parallelization mechanism

provided by TeamCity (CI Server)

• Level II: Running multiple Cypress instances simultaneously on each VM – 4 instances – parallelization

mechanism provided by NodeJS concurrently library

• The tests were run on 16 threads (browsers) simultaneously

21

Infrastructure for UI Tests - Limitations

• Too few virtual machines available

• Need to assign TC agent to VM (additional cost of buying TC agent licence)

22

Azure Batch Service

23

Azure Batch as an infrastructure for UI Testing

Steps performed by the Azure Batch process:

24

Standard Solution vs Azure Batch – TeamCity
Agents

 4 Agents vs 1 Agent

Only 1 Agent needed to run Azure Batch program and collect test results

25

Standard Solution vs Azure Batch – Test Durations

Total Test Time Duration: 14m 12s

 VS

Total Test Time Duration: 15m 30s

1. VCS Root Checkout and Build .Net Solutions - 0:45

2. Azure batch Script Run: 14:45

• Pool Node creation – 10VMs: 2:15

• VM’s dependencies instalation (docker container, project build etc): 2:50

• Test Run 10 VM’s at once per 3 Browser Threads: 8:40

• Pool Nodes deletion: 1:00

• The only effective way to verify that maps are displayed correctly

• Cypress + Cypress Image Snapshots

• Mocking responses to keep the same data in the test

26

The important role of visual regression testing in the
Platform

27

The important role of visual regression testing in the
Platform

Expected Difference Actual

• Added Backend for Frontend layer

API tests

• Added API tests for the most

important Backend services: Postman

+ Swagger Examples

28

FEBE API/Backend Services tests

29

 Backend Services Tests – Examples

• SO Healthchecks/Alerts

• Azure Application Insight, Jaeger, Rapid7

• Monitoring the production environment with UI tests

30

Service monitoring and observability

31

Creating dynamic environments for every PR

32

Continuous Delivery in Signal

33

Pull Request (Azure Devops)

34

Automatic Deployment to PROD – Slot Swap

35

Summary
• Continuous implementations to production—around 20 per week, rather than many at once weekly

• Improved platform quality through early error detection and comprehensive test coverage

• Improved efficiency for implementing and testing via dynamic creation of environments per PR

• Migrating UI tests to Cypress simplified error diagnosis, request mocking, and test parallelization

• Using Azure Batch for UI testing improved frequency and speed

• Enhanced monitoring and observability of dependent services

36

Thank you! ☺

Questions?

