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The Signal Group
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Signal Ocean Platform

• Fleet monitoring

• Freight market forecasting

• Shipping route optimization

• Data analysis

• Decision support
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Signal Ocean Platform - Architecture 

• Microservice architecture – BFF – Backend for Frontend – .NET or Python based API

• Frontend - ReactJS 

• The entire infrastructure, both production and development, is based on Azure Cloud
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Testing and CI/CD process at Signal – 2020
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• No separate environment for testing a given PR for a specific task - (development tests)

• No UI tests as part of the CI process - performed only on demand and slow

• No direct correlation between a given error in tests and a specific change in the code

• Overall low UI test coverage, no FEBE API layer tests (Integration tests) - lack of trust in UI tests

• TestCafe as a tool did not fully meet our expectations

• No monitoring of the state of dependent services - Backend for Frontend, Backend Service

• Release took place only once a week. Need to create a "release package" - a list of tasks merged to the 

release branch - high cost of maintaining this phase of the process, many test iterations

• Chaos - fixes added to the release branch, bypassing the unstable branch - frequent backmerges.
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Signal – New UI Testing Tool Evaluation
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Signal Ocean Platform UI Tests with TestCafe

• Hard to debug

• No solution for mocking the API layer of web applications

• Non-optimal test parallelization mechanism
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State of Testing Report 2021
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UI Testing in the CI/CD process

Version 
Control Build Unit    

Tests Deploy Automated 
Tests

Deploy to 
Production



• FEBE –  220 tests

• Mocked (Visual/Regression) - 620 tests
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UI Test – Increasing functionality coverage with tests

Traceability Matrix
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UI Tests – Number of tests and test execution speed

PR Runner UI Tests/Slot Swap UI Tests:
• UI Mock Tests: 620 tests run in 14 min

• UI FEBE Sanity Tests: 22 tests run in 4 min

Other (run once a day on Unstable environment)
• UI Unstable Mock Tests: 620 tests run in 14 min

• UI FEBE Tests: 220 tests run in 11 min

UI Test Type No. of Test 
Runs

UI Test Mock - PR Runner 67

UI Test FEBE Sanity - PR Runner 46

UI Test FEBE Sanity - Slot Swap Runner 72

UI Test Mock - Unstable Morning Run 30

UI Test FEBE - Unstable Morning Run 30

245 Test Runs - November
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Two levels of test execution parallelism

• Level I: Simultaneous execution on 4 VMs (2 x Azure Cloud + 2 x VMWare) – parallelization mechanism 

provided by TeamCity (CI Server)

• Level II: Running multiple Cypress instances simultaneously on each VM – 4 instances – parallelization 

mechanism provided by NodeJS concurrently library

• The tests were run on 16 threads (browsers) simultaneously
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Infrastructure for UI Tests - Limitations

• Too few virtual machines available

• Need to assign TC agent to VM (additional cost of buying TC agent licence)
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Azure Batch Service
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Azure Batch as an infrastructure for UI Testing

Steps performed by the Azure Batch process:
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Standard Solution vs Azure Batch – TeamCity 
Agents

 4 Agents vs 1 Agent

Only 1 Agent needed to run Azure Batch program and collect test results
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Standard Solution vs Azure Batch – Test Durations

Total Test Time Duration: 14m 12s

                                                              

                                                          VS

Total Test Time Duration:  15m 30s

1. VCS Root Checkout and Build .Net Solutions  -  0:45

2. Azure batch Script Run: 14:45

• Pool Node creation – 10VMs: 2:15

• VM’s dependencies instalation (docker container, project build etc): 2:50

• Test Run 10 VM’s at once per 3 Browser Threads: 8:40

• Pool Nodes deletion: 1:00



• The only effective way to verify that maps are displayed correctly

• Cypress + Cypress Image Snapshots

• Mocking responses to keep the same data in the test

26

The important role of visual regression testing in the 
Platform
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The important role of visual regression testing in the 
Platform

Expected Difference Actual



• Added Backend for Frontend layer 

API tests

• Added API tests for the most 

important Backend services: Postman 

+ Swagger Examples
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FEBE API/Backend Services tests
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 Backend Services Tests – Examples



• SO Healthchecks/Alerts

• Azure Application Insight, Jaeger, Rapid7

• Monitoring the production environment with UI tests
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Service monitoring and observability
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Creating dynamic environments for every PR
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Continuous Delivery in Signal
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Pull Request (Azure Devops)
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Automatic Deployment to PROD – Slot Swap
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Summary
• Continuous implementations to production—around 20 per week, rather than many at once weekly

• Improved platform quality through early error detection and comprehensive test coverage

• Improved efficiency for implementing and testing via dynamic creation of environments per PR

• Migrating UI tests to Cypress simplified error diagnosis, request mocking, and test parallelization

• Using Azure Batch for UI testing improved frequency and speed

• Enhanced monitoring and observability of dependent services
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Thank you! ☺

Questions?


