
Gáspár Nagy
coach • trainer • bdd addict • creator of specflow
“The BDD Books” series • http://bddbooks.com

@gasparnagy • gaspar@specsolutions.eu

Tree in the Forest
Managing Details in BDD Scenarios

HUSTEF 2023
5th October, 2023

Copyright © Gaspar NagyCopyright © Gaspar Nagy

Gáspár Nagy
coach, trainer and bdd addict
creator of SpecFlow

gaspar@specsolutions.eu

https://specsolutions.eu

@gasparnagy

http://bddbooks.com

bdd addict

given.when.then

CAUTION!

on air

bd
d

ne
w

sle
tte

r:
bddaddict.com

Copyright © Gaspar NagyCopyright © Gaspar Nagy

Today…

• Super brief BDD intro

• Scenarios as Tests

• Scenarios as Specification

• Types of Details

• Wrap-up, Q&A

Copyright © Gaspar Nagy

BDD in 3 minutes…

Copyright © Gaspar NagyCopyright © Gaspar Nagy

The bridge and the lightbulb by Unknown Author is licensed under CC BY-SA

REQ APP

BDD scenario: bridge between requirements
and the solution

make tests understandablemake requirements testable

Scenario: User votes up a question
Given a question asked with 2 votes
And the user is authenticated
When the user votes up the question
Then the votes should be changed to 3

http://parkerhiggins.net/2012/07/golden-gate-bridge-minimal/
http://byanyothernerd.blogspot.com/2013/03/when-lightbulb-flickers.html
https://creativecommons.org/licenses/by-sa/3.0/

Copyright © Gaspar NagyCopyright © Gaspar Nagy

Behaviour Driven Development is about

understanding, documenting & validating

business requirements

through illustrative scenarios

Copyright © Gaspar NagyCopyright © Gaspar Nagy

Purposes of scenarios

Scenario: The one where…
Given some context
When perform an action
Then the outcome happens

automated test

im
p

lem
e

n
tatio

n
 p

h
ase

(test-d
riven

)

m
ain

ten
an

ce p
h

ase
(regressio

n
)

BDD is not (only) testing!

Copyright © Gaspar Nagy

Scenarios as Tests

Copyright © Gaspar NagyCopyright © Gaspar Nagy

All details that are required for exercising the
application has to be available during execution latest

Copyright © Gaspar NagyCopyright © Gaspar Nagy

This brings up a couple of interesting
questions…

• What are those details? What kind of details we should consider?

• How do we agree on those details?

• Where do we document (store/code) those details?

Copyright © Gaspar NagyCopyright © Gaspar Nagy

Where to document the details?

In the text of
the scenario in
the feature file

In the
automation

code

In external
sources (Excel,
existing data,

etc.)

managed by code

Copyright © Gaspar NagyCopyright © Gaspar Nagy

The details are not removed from the scenario, but
pushed down to the code

Copyright © Gaspar Nagy

Scenario Code
vs

Pro

• Visible

• Easier test result analysis (debugging)

Con

• Makes scenario hard to read

• Maintainability problems

Pro

• Easy to reuse

• Different abstractions can be defined

• Maintainable

• Visible during execution (dynamic
visibility)

Con

• Harder to see details in code (static
visibility)

• Code is not a shared asset

Details in Gherkin Details coded or processed by code

Copyright © Gaspar NagyCopyright © Gaspar Nagy

It is easier to manage details in code,
but we need to work extra for visibility

Copyright © Gaspar Nagy

Scenarios as
Specification

Copyright © Gaspar NagyCopyright © Gaspar Nagy

How to make scenarios to good specification

• Easy to read, review & discuss
• Not too long (brief)

• Free of “noise”

• Business language (ubiquitous language)

• Should only change when the requirement changes
• No technical/solution details

• Focus on the what (intention) and not the how (steps to achieve)

• Concrete, so that the validity can be checked
• Contain essential (relevant) details

• Contain real/concrete data

• Should focus on a single business rule

Copyright © Gaspar NagyCopyright © Gaspar Nagy

6 BRIEF principles of good scenarios

• Business language — Business terminology aids cross-discipline collaboration

• Real data — Using actual data helps reveal assumptions and edge cases

• Intention revealing — Describe the desired outcomes, rather than the mechanism
of how they are achieved

• Essential — Omit any information that doesn’t directly illustrate behaviour

• Focused — Each scenario should only illustrate a single rule

• Brief — Shorter scenarios are easier to read, understand and maintain

Copyright © Gaspar NagyCopyright © Gaspar Nagy

What details are essential?

There are no fixed guidelines to decide on this… and the answer might be context
specific…

• The details that influence the outcome (=Then steps)

• The details that are relevant for the “rule” (=AC, business rule, requirement) the
scenario illustrates (“focuses on”, purpose)

Copyright © Gaspar NagyCopyright © Gaspar Nagy

Deciding on essential details in scenarios without clear
outcome and purpose is not possible

You need to fix those first

Copyright © Gaspar Nagy

Types of Details

Copyright © Gaspar NagyCopyright © Gaspar Nagy

Detail types

Scenario Related

1. Entity
property

2. Entity
existence

3.
Hierarchic

al data

4.
Technical

details

5.
Contextual

details
(scenario
execution
context)

Implicit Context
Related

6. Baseline
7.

Workflow
steps

8. System
status

Note: Not necessary a complete list and there are overlaps

Copyright © Gaspar NagyCopyright © Gaspar Nagy

1. Entity property

• Many properties of the entity might not
be relevant for the scenario

• These properties change and extended
independently of the scenario

• Push down: maintain a default (test)
values for the properties of the entities
in code

Given the customer has an order
 | status | payment method | issue date | due date |
 | created | bank_transfer | 7/25/2023 | 8/24/2023 |

Given the customer has an order

Given the customer has a dispatched order

Given the customer has an order
 | status |
 | dispatched |

used defaults

defaults can be overridden

Copyright © Gaspar NagyCopyright © Gaspar Nagy

2. Entity existence

• The existence of some entities might be
required for execution, but not relevant
for the outcome (e.g. address record of
a customer; customer for an order)

• These requirements might change
independently of the scenario

• Push down:
• populate the records with defaults

automatically

• ensure that all prerequisite is created

Given there is a customer
And the customer has an address
 | street | city |
 | 18 Holyrood Park Road | Edinburgh |

Given there is a customer
pre-populate with

default address

Given there is a customer
And there is an order of the customer

required prerequisites

Given there is an order
ensure customer

prerequisite

Copyright © Gaspar NagyCopyright © Gaspar Nagy

3. Hierarchical data

• Some tests require a hierarchical set of
data

• Complex data hierarchies are hard to
understand, so should be simplified

• Push down:
• ensure that prerequisite is created

• build up hierarchy as a story by relevant
steps

• use custom format to express (e.g. yaml)

• use internal IDs

Given there is a customer "AA“
And the customer "AA“ has an order "O293445“
And the order "O293445" has an item
 | item id | product | quantity |
 | 268 | Flipchart | 13 |
And the order item "268“ has a comment “…“

Given the is an order with
 | product | quantity | comment |
 | Flipchart | 13 | ... |

relevant
details only

Copyright © Gaspar NagyCopyright © Gaspar Nagy

4. Technical details

• Technical details and steps might be
needed to execute a particular business
action (e.g. enter the name to a textbox
with ID “tb1234”)

• These details are bound to the
implementation, not the specification

• Documenting this details in scenarios
requires intensive maintenance

• Push down:
• Identify & express business needs or actions

• Translate these to the technical details in
code (reusable!)

When the user clicks on button
 "//*[@id="orders_O293445"]/td[3]/a"

When the user attempts to start changing in
the order

identified
business action

Copyright © Gaspar NagyCopyright © Gaspar Nagy

5. Contextual details (scenario execution
context)

• The “story” that the scenario explains
might need to introduce details that are
referred in later steps – they are part of
the scenario execution context

• Duplicating these details makes the
scenario verbose and hard to
understand

• Push down:
• Store these contextual details in scenario-

lifetime storage provided by the BDD
framework (World, ScenarioContext)

• Resolve the references to these details from
the storage

Given there is a customer "AA“
And the customer "AA“ has an order "O293445“
When the customer “AA” changes
 the order "O293445“

Given the customer has an order
When they change the order

refer to
context

Given the customer has an order
When the customer changes the order

can use more explicit form as well

Copyright © Gaspar NagyCopyright © Gaspar Nagy

6. Baseline

• The scenarios of a product might need
“usual” data for expressing the examples

• Many team has an implicit agreement to
use the same data over and over, so it
might became noise

• Push down:
• Make a team agreement of “default” test

data and make sure those can be used
without explicitly listing them

• Special scenarios can still override

• There might be multiple baseline sets

Given there are the following products
name	unit price
Flipchart	250
Sticky Notes	18
And the is an order with	
product	quantity
Flipchart	13

Given the is an order with
 | product | quantity |
 | Flipchart | 13 |

Flipchart and
Sticky Notes are

always there

Copyright © Gaspar NagyCopyright © Gaspar Nagy

Personas in “Baseline” details

• A persona is a fictional character created
to represent a user type that might use a
[…] product in a similar way. (Wikipedia)
• Well known to the team
• Helps discussions as it saves time of

explaining the context

• Similarly you might have fictional, well-
known data that we use in discussions
• Jenny Martin refers to these as “Data

Personas”
(https://jennyjmar.com/2016/04/15/data-
personas/)

• Personas and Data Personas are also
useful for specification & testing!

Picture source: Wikipedia

https://jennyjmar.com/2016/04/15/data-personas/
https://jennyjmar.com/2016/04/15/data-personas/

Copyright © Gaspar NagyCopyright © Gaspar Nagy

7. Workflow steps

• The different user or workflow steps
might also represent details that are not
relevant

• Keeping these details in the scenario
causes maintainability issues once the
workflow changes

• It is better to state the intentions and
the relevant steps only

• Push down:
• Express intention revealing steps and ensure

the state by repaying the necessary steps or
by applying a shortcut in the automation
code

Given the customer has logged in
And the customer dismissed the newsletter
subscription
And the customer started to create an order
And the customer added the line to the order
 | product | quantity |
 | Flipchart | 13 |
And the customer has placed the order

Given the customer has placed an order with
 | product | quantity |
 | Flipchart | 13 |

removed non-
relevant

workflow steps

Copyright © Gaspar NagyCopyright © Gaspar Nagy

8. System status

• The details might be shown as
declaration of the system or entity statis

• Declaring “normal” status makes the
scenarios harder to understand

• Push down:
• Remove unnecessary status declarations

from the scenario

• Optionally add precondition checks to
different actions to make sure that the
system is in the expected state

Given there is a customer
And the customer is not blocked

Given there is a customer

removed non-
relevant status

declaration

Copyright © Gaspar Nagy

Wrap-up

Copyright © Gaspar NagyCopyright © Gaspar Nagy

We covered…

• That scenarios need details for execution, but you don’t necessarily need to store
those in the scenario itself, but push down to automation code

• That in order to use scenarios as specification, we need to make them focused
and express only essential details in the steps

• That there are different detail types, watch for them and apply the mentioned
“push-down” strategies if required

Copyright © Gaspar NagyCopyright © Gaspar Nagy

Be aware of the details

Push them down

Make a team agreement on implicit details

Gáspár Nagy
coach • trainer • bdd addict • creator of specflow
“The BDD Books” series • http://bddbooks.com

@gasparnagy • gaspar@specsolutions.eu

Thank you!

	Default Section
	Slide 1: Tree in the Forest Managing Details in BDD Scenarios
	Slide 2
	Slide 3: Today…

	BDD Intro
	Slide 4
	Slide 5: BDD scenario: bridge between requirements and the solution
	Slide 6
	Slide 9: Purposes of scenarios

	Scenarios as Tests
	Slide 10
	Slide 12
	Slide 13: This brings up a couple of interesting questions…
	Slide 14: Where to document the details?
	Slide 15
	Slide 17
	Slide 20

	Scenarios as Specification
	Slide 21
	Slide 22: How to make scenarios to good specification
	Slide 23: 6 BRIEF principles of good scenarios
	Slide 24: What details are essential?
	Slide 25

	Types of Details
	Slide 26
	Slide 30: Detail types
	Slide 31: 1. Entity property
	Slide 32: 2. Entity existence
	Slide 33: 3. Hierarchical data
	Slide 34: 4. Technical details
	Slide 35: 5. Contextual details (scenario execution context)

	Implicit Context
	Slide 43: 6. Baseline
	Slide 44: Personas in “Baseline” details
	Slide 45: 7. Workflow steps
	Slide 46: 8. System status

	Closing
	Slide 47
	Slide 48: We covered…
	Slide 49
	Slide 50: Thank you!

