
Load testing websites following the steps of a user journey

Raphael Roems

Contents

- Why is load testing important?

- What is a user journey?

- Why perform load testing following the steps of a user journey?

- Creating test scenarios and test data

- Load testing website backend and frontend architecture

- Test tool selection

- Environment(s) to use when executing load tests

- Test results

- Final thoughts

Why is load testing important?

- Assists in identifying performance related shortcomings in a software product

- Load test results being a deliverable for business stakeholders

- Preventing sub optimal user experience and potential revenue loss/extra

costs

- Findings present an opportunity to fine-tune and improve the software

What is a user journey?

Specific steps a user needs to perform to accomplish something on a website

Ecommerce website

Educational website

Why perform load testing following the steps of a user

journey?

Why perform load testing following the steps of a user

journey?

Identifying bottlenecks including:

- Building up of website objects (calculations)

- Third-party service providers (authentication services, payment gateways)

- High CPU/memory usage, database related issues (slow queries, locks)

Creating test scenarios

- Browse as a user would

- Focus on the most common use cases, rather than all the possible use cases

- Ensure that sufficient and valid test data is available for test duration

- Recording tools

Using unique cookies for user journey tests

Load testing website backend and frontend architecture

Load testing backend performance

Load testing frontend performance

Source: Blazemeter

Challenges with load testing frontend performance

Test tool selection

Test tool selection

Test tool selection

Environment(s) to use when executing load tests

- Environment used for load testing should ideally have same hardware and

software configuration as production

- Testing in production yields most accurate results, but has risks!

- Testing in a pre-production environments enables the identification of

performance related defects early

- Attempting to extrapolate load test results to different environment has risks

Test results (JMeter)

Test results (JMeter)

Test results (JMeter)

Test results (Locust)

Test results (Locust)

Test results (Locust)

Test results (Locust)

Final thoughts

- Proper preparation before starting load testing will prevent issues down the line

- JMeter is the preferable tool to use when starting an internal load/performance

testing competency

- When there is a skill or time sensitive load testing requirement, a popular

commercial tool can be useful

- Locust has distinct advantages when there is sufficient technical expertise

Questions?

	Slide 1: Load testing websites following the steps of a user journey
	Slide 2: Contents
	Slide 3: Why is load testing important?
	Slide 4: What is a user journey?
	Slide 5: Why perform load testing following the steps of a user journey?
	Slide 6: Why perform load testing following the steps of a user journey?
	Slide 7: Creating test scenarios
	Slide 8: Using unique cookies for user journey tests
	Slide 9: Load testing website backend and frontend architecture
	Slide 10
	Slide 11
	Slide 12:
	Slide 13: Test tool selection
	Slide 14: Test tool selection
	Slide 15: Test tool selection
	Slide 16: Environment(s) to use when executing load tests
	Slide 17: Test results (JMeter)
	Slide 18: Test results (JMeter)
	Slide 19: Test results (JMeter)
	Slide 20: Test results (Locust)
	Slide 21: Test results (Locust)
	Slide 22: Test results (Locust)
	Slide 23: Test results (Locust)
	Slide 24: Final thoughts
	Slide 25: Questions?

