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Why is load testing important?

- Assists in identifying performance related shortcomings in a software product

- Load test results being a deliverable for business stakeholders

- Preventing sub optimal user experience and potential revenue loss/extra 

costs

- Findings present an opportunity to fine-tune and improve the software



What is a user journey?

Specific steps a user needs to perform to accomplish something on a website

Ecommerce website

Educational website



Why perform load testing following the steps of a user 

journey?



Why perform load testing following the steps of a user 

journey?

Identifying bottlenecks including:

- Building up of website objects (calculations)

- Third-party service providers (authentication services, payment gateways)

- High CPU/memory usage, database related issues (slow queries, locks)



Creating test scenarios

- Browse as a user would

- Focus on the most common use cases, rather than all the possible use cases

- Ensure that sufficient and valid test data is available for test duration

- Recording tools



Using unique cookies for user journey tests



Load testing website backend and frontend architecture



Load testing backend performance



Load testing frontend performance



Source: Blazemeter

Challenges with load testing frontend performance



Test tool selection



Test tool selection



Test tool selection



Environment(s) to use when executing load tests

- Environment used for load testing should ideally have same hardware and 

software configuration as production

- Testing in production yields most accurate results, but has risks!

- Testing in a pre-production environments enables the identification of 

performance related defects early

- Attempting to extrapolate load test results to different environment has risks



Test results (JMeter)



Test results (JMeter)



Test results (JMeter)



Test results (Locust)



Test results (Locust)



Test results (Locust)



Test results (Locust)



Final thoughts

- Proper preparation before starting load testing will prevent issues down the line

- JMeter is the preferable tool to use when starting an internal load/performance 

testing competency

- When there is a skill or time sensitive load testing requirement, a popular 

commercial tool can be useful

- Locust has distinct advantages when there is sufficient technical expertise



Questions?
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