
Observability:

What, why and how

(on a shoestring budget)

Abby Bangser (She/her)
abby@paintedwavelimited.com

@a_bangser
@a_bangser.bsky.social
hachyderm.io/@abangser

Observability

In control theory, observability is the

measure of how well internal states

of a system can be inferred from

knowledge of its external outputs.

Observability

In control theory, observability is the

measure of how well internal states

of a system can be inferred from

knowledge of its external outputs.

@
a
_
b
a
n
g
s
e
r

“Measure of how well” means it’s a scale

@
a
_
b
a
n
g
s
e
r

“Measure of how well” means it’s a scale

Incident
Triage

Incident
Triage

happening?!

observability

observability observability

Observability

In control theory, observability is the

measure of how well internal states

of a system can be inferred from

knowledge of its external outputs.

@
a
_
b
a
n
g
s
e
r

External outputs come in different forms

Observability

In control theory, observability is the

measure of how well internal states

of a system can be inferred from

knowledge of its external outputs.

@
a
_
b
a
n
g
s
e
r

Observability enables

understanding the “other”

@
a
_
b
a
n
g
s
e
r

Characteristics of valuable outputs

➔ raw events
➔ no pre-aggregation
➔ structured data
➔ arbitrarily wide events
➔ schema-less-ness
➔ high cardinality dimensions
➔ oriented around request lifecycle
➔ batched up context
➔ exploration over static dashboards

@
a
_
b
a
n
g
s
e
r

Characteristics of valuable outputs

➔ raw events
➔ no pre-aggregation
➔ structured data
➔ arbitrarily wide events
➔ schema-less-ness
➔ high cardinality dimensions
➔ oriented around request lifecycle
➔ batched up context
➔ exploration over static dashboards

@
a
_
b
a
n
g
s
e
r

Characteristics of valuable outputs

➔ raw events
➔ no pre-aggregation
➔ structured data
➔ arbitrarily wide events
➔ schema-less-ness
➔ high cardinality dimensions
➔ oriented around request lifecycle
➔ batched up context
➔ exploration over static dashboards

The promise of

monitoring vs my reality

My rollercoaster journey with

understanding metrics and

pre-aggregation

@
a
_
b
a
n
g
s
e
r

Metrics as signal for success (or failure)

@
a
_
b
a
n
g
s
e
r

How I imagined metrics & alerts would work

@
a
_
b
a
n
g
s
e
r

What metrics actually looked like

@
a
_
b
a
n
g
s
e
r

But trends can be helpful

@a_bangser

The plan:

Standardise metrics

@a_bangser

The way metrics are stored means

we had to pre-define two items:

1. Buckets

2. Windows

@
a
_
b
a
n
g
s
e
r

Buckets: Aggregation of data for storage

@
a
_
b
a
n
g
s
e
r

example.com/cart 0.25

 example.com/big_file 5

Buckets: And then tallied

@
a
_
b
a
n
g
s
e
r

Windows: Define when the data is reviewed

@
a
_
b
a
n
g
s
e
r

We collected requests per bucket, per window

@
a
_
b
a
n
g
s
e
r

➔ 40 services
➔ 4 core languages
➔ 3 architectural eras
➔ 2 transport protocols (http and gRPC)

…and a partridge in a pear tree

Rolling this out took a number of changes

@
a
_
b
a
n
g
s
e
r

We were ready to build some cool stuff

@
a
_
b
a
n
g
s
e
r

Consistency generated a ton of learning

@a_bangser

But…

@
a
_
b
a
n
g
s
e
r

Data collection required assumptions.

And we weren’t always correct.

@
a
_
b
a
n
g
s
e
r

And we ended up throwing it all away

@
a
_
b
a
n
g
s
e
r

At least once updated, we are set right?

@a_bangser

That depends…

are you ready for the truth?

We weren’t.

@a_bangser

But we found it.

We asked ourselves…

“what is the user impact of

the 99th percentile”

@
a
_
b
a
n
g
s
e
r

1% is small right? Nope! 56k users!

@
a
_
b
a
n
g
s
e
r

But 5s isn’t so bad. At least it isn’t like…10s!

@
a
_
b
a
n
g
s
e
r

Turns out, metrics sometimes have to guess

“

@a_bangser

While consistent metrics provided a

step forward with trending…

In retrospect, this was not mature

observability

“

@a_bangser

Why avoid pre-aggregation?

You can never regain original context and

detail. You will only ever answer

predetermined questions.

@
a
_
b
a
n
g
s
e
r

Characteristics of valuable outputs

➔ raw events
➔ no pre-aggregation
➔ structured data
➔ arbitrarily wide events
➔ schema-less-ness
➔ high cardinality dimensions
➔ oriented around request lifecycle
➔ batched up context
➔ exploration over static dashboards

Data is not the same

as information

When collecting data, think first

about how you will turn that into

useful information through queries

@
a
_
b
a
n
g
s
e
r

Humans have always logged

@
a
_
b
a
n
g
s
e
r

We have also always wanted more

@
a
_
b
a
n
g
s
e
r

… and more

@
a
_
b
a
n
g
s
e
r

Structure came later

@
a
_
b
a
n
g
s
e
r

…And of course we wanted more

@a_bangser

Wait a second…

What even is logging?

@
a
_
b
a
n
g
s
e
r

Imagine an image manipulation app

@
a
_
b
a
n
g
s
e
r

A deep dive on how logs are written

@PostMapping ("flip")

public ResponseEntity flipImage (@RequestParam("image") MultipartFile file,

 @RequestParam(value="vertical") Boolean vertical,

 @RequestParam(value="horizontal") Boolean horizontal

{

 LOGGER.info("Receiving image to flip.", file.getContentType());

 byte[] flippedImage = imageService.flip (file, vertical, horizontal);

 if (flippedImage == null) {

 new ResponseEntity<>("Failed to flip image", HttpStatus.INTERNAL_SERVER_ERROR);

 }

 LOGGER.info("Successfully flipped image id: {}", file.getId());

 return new ResponseEntity<> (flippedImage, headers, HttpStatus.OK);

}

@
a
_
b
a
n
g
s
e
r

A deep dive on how logs are written

@PostMapping ("flip")

public ResponseEntity flipImage (@RequestParam("image") MultipartFile file,

 @RequestParam(value="vertical") Boolean vertical,

 @RequestParam(value="horizontal") Boolean horizontal

{

 LOGGER.info("Receiving image to flip.", file.getContentType());

 byte[] flippedImage = imageService.flip (file, vertical, horizontal);

 if (flippedImage == null) {

 new ResponseEntity<>("Failed to flip image", HttpStatus.INTERNAL_SERVER_ERROR);

 }

 LOGGER.info("Successfully flipped image id: {}", file.getId());

 return new ResponseEntity<> (flippedImage, headers, HttpStatus.OK);

}

LOGGER.info("Receiving image to flip.", file.getContentType());

@
a
_
b
a
n
g
s
e
r

A deep dive on how logs are written

@PostMapping ("flip")

public ResponseEntity flipImage (@RequestParam("image") MultipartFile file,

 @RequestParam(value="vertical") Boolean vertical,

 @RequestParam(value="horizontal") Boolean horizontal

{

 LOGGER.info("Receiving image to flip.", file.getContentType());

 byte[] flippedImage = imageService.flip (file, vertical, horizontal);

 if (flippedImage == null) {

 new ResponseEntity<>("Failed to flip image", HttpStatus.INTERNAL_SERVER_ERROR);

 }

 LOGGER.info("Successfully flipped image id: {}", file.getId());

 return new ResponseEntity<> (flippedImage, headers, HttpStatus.OK);

}

byte[] flippedImage = imageService.flip (file, vertical, horizontal);

@
a
_
b
a
n
g
s
e
r

A deep dive on how logs are written

@PostMapping ("flip")

public ResponseEntity flipImage (@RequestParam("image") MultipartFile file,

 @RequestParam(value="vertical") Boolean vertical,

 @RequestParam(value="horizontal") Boolean horizontal

{

 LOGGER.info("Receiving image to flip.", file.getContentType());

 byte[] flippedImage = imageService.flip (file, vertical, horizontal);

 if (flippedImage == null) {

 new ResponseEntity<>("Failed to flip image", HttpStatus.INTERNAL_SERVER_ERROR);

 }

 LOGGER.info("Successfully flipped image id: {}", file.getId());

 return new ResponseEntity<> (flippedImage, headers, HttpStatus.OK);

}

@
a
_
b
a
n
g
s
e
r

A deep dive on how logs are written

@PostMapping ("flip")

public ResponseEntity flipImage (@RequestParam("image") MultipartFile file,

 @RequestParam(value="vertical") Boolean vertical,

 @RequestParam(value="horizontal") Boolean horizontal

{

 LOGGER.info("Receiving image to flip.", file.getContentType());

 byte[] flippedImage = imageService.flip (file, vertical, horizontal);

 if (flippedImage == null) {

 new ResponseEntity<>("Failed to flip image", HttpStatus.INTERNAL_SERVER_ERROR);

 }

 LOGGER.info("Successfully flipped image id: {}", file.getId());

 return new ResponseEntity<> (flippedImage, headers, HttpStatus.OK);

}

LOGGER.info("Successfully flipped image id: {}", file.getId());

@
a
_
b
a
n
g
s
e
r

A deep dive on how logs are written

@PostMapping ("flip")

public ResponseEntity flipImage (@RequestParam("image") MultipartFile file,

 @RequestParam(value="vertical") Boolean vertical,

 @RequestParam(value="horizontal") Boolean horizontal

{

 LOGGER.info("Receiving image to flip.", file.getContentType());

 byte[] flippedImage = imageService.flip (file, vertical, horizontal);

 if (flippedImage == null) {

 new ResponseEntity<>("Failed to flip image", HttpStatus.INTERNAL_SERVER_ERROR);

 }

 LOGGER.info("Successfully flipped image id: {}", file.getId());

 return new ResponseEntity<> (flippedImage, headers, HttpStatus.OK);

}

@
a
_
b
a
n
g
s
e
r

Resulting log outputs

@a_bangser

Sure,

but what else is there?

@
a
_
b
a
n
g
s
e
r

In contrast, how events are written

@PostMapping("flip")

public ResponseEntity flipImage(...) {

 EVENT.addField("content.type", file.getContentType());

 EVENT.addField("action", "flip");

 EVENT.addField("image_id", file.getId());

 EVENT.addField("flip_vertical", vertical);

 EVENT.addField("flip_horizontal", horizontal);

...

 LOGGER.info("Receiving {} image to flip.", file.getContentType ());

 byte[] flippedImage imageService.flip(file, vertical, horizontal);

...

 LOGGER.info("Successfully flipped image id: {}", file.getId());

 EVENT.addField("action.success", "true");

 return new ResponseEntity<>(flippedImage, headers, HttpStatus.OK);

}

@
a
_
b
a
n
g
s
e
r

In contrast, how events are written

@PostMapping("flip")

public ResponseEntity flipImage(...) {

 EVENT.addField("content.type", file.getContentType());

 EVENT.addField("action", "flip");

 EVENT.addField("image_id", file.getId());

 EVENT.addField("flip_vertical", vertical);

 EVENT.addField("flip_horizontal", horizontal);

...

 LOGGER.info("Receiving {} image to flip.", file.getContentType ());

 byte[] flippedImage imageService.flip(file, vertical, horizontal);

...

 LOGGER.info("Successfully flipped image id: {}", file.getId());

 EVENT.addField("action.success", "true");

 return new ResponseEntity<>(flippedImage, headers, HttpStatus.OK);

}

EVENT.addField("content.type", file.getContentType());

EVENT.addField("action", "flip");

EVENT.addField("image_id", file.getId());

EVENT.addField("flip_vertical", vertical);

EVENT.addField("flip_horizontal", horizontal);

LOGGER.info("Receiving {} image to flip.", file.getContentType ());

@
a
_
b
a
n
g
s
e
r

In contrast, how events are written

@PostMapping("flip")

public ResponseEntity flipImage(...) {

 EVENT.addField("content.type", file.getContentType());

 EVENT.addField("action", "flip");

 EVENT.addField("image_id", file.getId());

 EVENT.addField("flip_vertical", vertical);

 EVENT.addField("flip_horizontal", horizontal);

...

 LOGGER.info("Receiving {} image to flip.", file.getContentType ());

 byte[] flippedImage imageService.flip(file, vertical, horizontal);

...

 LOGGER.info("Successfully flipped image id: {}", file.getId());

 EVENT.addField("action.success", "true");

 return new ResponseEntity<>(flippedImage, headers, HttpStatus.OK);

}

EVENT.addField("content.type", file.getContentType());

EVENT.addField("action", "flip");

EVENT.addField("image_id", file.getId());

EVENT.addField("flip_vertical", vertical);

EVENT.addField("flip_horizontal", horizontal);

@
a
_
b
a
n
g
s
e
r

In contrast, how events are written

@PostMapping("flip")

public ResponseEntity flipImage(...) {

 EVENT.addField("content.type", file.getContentType());

 EVENT.addField("action", "flip");

 EVENT.addField("image_id", file.getId());

 EVENT.addField("flip_vertical", vertical);

 EVENT.addField("flip_horizontal", horizontal);

...

 LOGGER.info("Receiving {} image to flip.", file.getContentType ());

 byte[] flippedImage imageService.flip(file, vertical, horizontal);

...

 LOGGER.info("Successfully flipped image id: {}", file.getId());

 EVENT.addField("action.success", "true");

 return new ResponseEntity<>(flippedImage, headers, HttpStatus.OK);

}

EVENT.addField("content.type", file.getContentType());

EVENT.addField("action", "flip");

EVENT.addField("image_id", file.getId());

EVENT.addField("flip_vertical", vertical);

EVENT.addField("flip_horizontal", horizontal);

LOGGER.info("Successfully flipped image id: {}", file.getId());

@
a
_
b
a
n
g
s
e
r

In contrast, how events are written

@PostMapping("flip")

public ResponseEntity flipImage(...) {

 EVENT.addField("content.type", file.getContentType());

 EVENT.addField("action", "flip");

 EVENT.addField("image_id", file.getId());

 EVENT.addField("flip_vertical", vertical);

 EVENT.addField("flip_horizontal", horizontal);

...

 LOGGER.info("Receiving {} image to flip.", file.getContentType ());

 byte[] flippedImage imageService.flip(file, vertical, horizontal);

...

 LOGGER.info("Successfully flipped image id: {}", file.getId());

 EVENT.addField("action.success", "true");

 return new ResponseEntity<>(flippedImage, headers, HttpStatus.OK);

}

EVENT.addField("content.type", file.getContentType());
EVENT.addField("action", "flip");
EVENT.addField("image_id", file.getId());
EVENT.addField("flip_vertical", vertical);
EVENT.addField("flip_horizontal", horizontal);
EVENT.addField("action.success", "true");

@
a
_
b
a
n
g
s
e
r

Comparing log and event output

@
a
_
b
a
n
g
s
e
r

Key:Value makes data more accessible

@
a
_
b
a
n
g
s
e
r

…and all within the same context

@
a
_
b
a
n
g
s
e
r

…and easy to add more!

Better data structures supports more

democratised debugging

Complex systems require a low friction way to add fields for added

context and searchability and a way to combine technical context with

business context

CustomerId: 2134354

AppVersion: 123

RequestUri: w
w

w.

@a_bangser

Pssst…

You heard of tracing?

That is just events with

some extra IDs thrown in!

@
a
_
b
a
n
g
s
e
r

Characteristics of valuable outputs

➔ raw events
➔ no pre-aggregation
➔ structured data
➔ arbitrarily wide events
➔ schema-less-ness
➔ high cardinality dimensions
➔ oriented around request lifecycle
➔ batched up context
➔ exploration over static dashboards

Debugging distributed

systems is difficult

Especially when business impact is on

the line. Let’s talk incident response.

@
a
_
b
a
n
g
s
e
r

Hmmm, an automated alert

@
a
_
b
a
n
g
s
e
r

Yup, definitely an issue!

@
a
_
b
a
n
g
s
e
r

All hands on deck, what is happening…and why?

@
a
_
b
a
n
g
s
e
r

2+ hrs later and still no idea!

@
a
_
b
a
n
g
s
e
r

And it happens…again…and again…

@
a
_
b
a
n
g
s
e
r

On call engineers are not amused

@
a
_
b
a
n
g
s
e
r

But service owners were working hard!

@
a
_
b
a
n
g
s
e
r

These were some awesome dashboards

@
a
_
b
a
n
g
s
e
r

The dashboards showed a lot of detail

@
a
_
b
a
n
g
s
e
r

And broke down different parameters

@
a
_
b
a
n
g
s
e
r

They even helped reduce incident impact

@
a
_
b
a
n
g
s
e
r

But human pattern matchers solved it

@
a
_
b
a
n
g
s
e
r

So what happened to the new dashboards?

@
a
_
b
a
n
g
s
e
r

They were sent to the farm…

with lots of friends

Why prioritise exploration?

Dashboards are the scar tissue of past

incidents. Focus on learning about new

behaviours and issues.

@
a
_
b
a
n
g
s
e
r

These characteristics drive outcomes

So how can I get

started?

@
a
_
b
a
n
g
s
e
r

It depends on your context

● Remove pressure from your metrics by
understanding their use case better

● Introduce more context to your log/event data?

● Shift from logs to events where it makes sense?

● Enable easier exploration instead of fancier
dashboards?

@
a
_
b
a
n
g
s
e
r

Focus on outcomes.

Our desired outcomes are:

➔ Iterating quickly on feature development

➔ Debugging user issues

➔ Understanding usage patterns without
putting user privacy at risk

@
a
_
b
a
n
g
s
e
r

Iterate quickly on feature development

➔ Provide rich contextual information in our logs

@
a
_
b
a
n
g
s
e
r

Iterate quickly on feature development

➔ Provide rich contextual information in our logs

➔ Default access to a logger

@
a
_
b
a
n
g
s
e
r

Debug user issues

➔ Create a way to see / share logs easily

$ manager-logs
+ kratix-t55tw › manager
kratix-774b9b9d45-t55tw manager 2023-09-24T11:11:12Z INFO INFO controllers.Promise.namespace
Reconciling {"uid": "4556e", "promiseID": "namespace", "namespace": {"name":"example","namespace":"default"},
"resourceRequest": "namespace-example", "kind": "Job", "name": "configure-pipeline-namespace-6ff1e",
"namespace": "default", "labels":
{"kratix-promise-id":"namespace","kratix-promise-resource-request-id":"namespace-example","kratix-resource-hash":
"af2543d1e1e8b1a87dcbc8842252297c","kratix-workflow-action":"configure","kratix-workflow-kind":"pipeline.platform
.kratix.io","kratix-workflow-promise-version":"v1alpha1","kratix-workflow-type":"resource"}}

@
a
_
b
a
n
g
s
e
r

Debug user issues

➔ Create a way to see / share logs easily

➔ Be intentional about “noise”

@
a
_
b
a
n
g
s
e
r

Understand usage patterns without

putting user privacy at risk

➔ Leverage the low cardinality of metrics

@
a
_
b
a
n
g
s
e
r

Understand usage patterns without

putting user privacy at risk

➔ Leverage the low cardinality of metrics

➔ Allow users to turn this off

@
a
_
b
a
n
g
s
e
r

At the end of the day…

➔ Observability is a tool and each technique has its use
cases and challenges.

➔ Data collection is not the goal and is not magic.

➔ Focus on outcomes and use observability to achieve
them.

Thank you!

Abby Bangser (She/her)
abby@paintedwavelimited.com

@a_bangser
@abangser.bsky.social

hachyderm.io/@abangser

