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External outputs come in different forms
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Observability enables 

understanding the “other”
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Characteristics of valuable outputs

➔ raw events
➔ no pre-aggregation
➔ structured data
➔ arbitrarily wide events
➔ schema-less-ness
➔ high cardinality dimensions
➔ oriented around request lifecycle
➔ batched up context
➔ exploration over static dashboards
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The promise of 

monitoring vs my reality

My rollercoaster journey with 

understanding metrics and 

pre-aggregation
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Metrics as signal for success (or failure)
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How I imagined metrics & alerts would work
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What metrics actually looked like
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But trends can be helpful



@a_bangser

The plan:

Standardise metrics
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The way metrics are stored means 

we had to pre-define two items:

1. Buckets

2. Windows
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Buckets: Aggregation of data for storage



@
a
_
b
a
n
g
s
e
r

example.com/cart 0.25

   example.com/big_file 5

Buckets: And then tallied
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Windows: Define when the data is reviewed
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We collected requests per bucket, per window
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➔ 40 services
➔ 4 core languages
➔ 3 architectural eras
➔ 2 transport protocols (http and gRPC)

…and a partridge in a pear tree

Rolling this out took a number of changes
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We were ready to build some cool stuff
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Consistency generated a ton of learning



@a_bangser

But…
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Data collection required assumptions.

And we weren’t always correct.
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And we ended up throwing it all away
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At least once updated, we are set right?
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That depends…

are you ready for the truth?

We weren’t.
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But we found it.

We asked ourselves…

“what is the user impact of 

the 99th percentile”
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1% is small right? Nope! 56k users!
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But 5s isn’t so bad. At least it isn’t like…10s!



@
a
_
b
a
n
g
s
e
r

Turns out, metrics sometimes have to guess



“

@a_bangser

While consistent metrics provided a 

step forward with trending…

In retrospect, this was not mature 

observability



“

@a_bangser

Why avoid pre-aggregation?

You can never regain original context and 

detail. You will only ever answer 

predetermined questions.
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Data is not the same 

as information

When collecting data, think first 

about how you will turn that into 

useful information through queries
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Humans have always logged
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We have also always wanted more
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… and more
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Structure came later
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…And of course we wanted more
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Wait a second…

What even is logging?
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Imagine an image manipulation app
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A deep dive on how logs are written

@PostMapping ("flip")

public ResponseEntity flipImage (@RequestParam("image") MultipartFile file,

       @RequestParam(value="vertical") Boolean vertical,

   @RequestParam(value="horizontal") Boolean horizontal

{

  LOGGER.info("Receiving image to flip.", file.getContentType());

  byte[] flippedImage = imageService.flip (file, vertical, horizontal);

  if (flippedImage == null) {

    new ResponseEntity<>("Failed to flip image", HttpStatus.INTERNAL_SERVER_ERROR);

  }

  LOGGER.info("Successfully flipped image id: {}", file.getId());

  return new ResponseEntity<> (flippedImage, headers, HttpStatus.OK);

}
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Resulting log outputs
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Sure,

but what else is there?
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In contrast, how events are written

@PostMapping("flip")

public ResponseEntity flipImage(...) {

  EVENT.addField("content.type", file.getContentType() );

  EVENT.addField("action", "flip");

  EVENT.addField("image_id", file.getId());

  EVENT.addField("flip_vertical", vertical);

  EVENT.addField("flip_horizontal", horizontal);

...

  LOGGER.info("Receiving {} image to flip.", file.getContentType () );

  byte[] flippedImage imageService.flip(file, vertical, horizontal);

...

  LOGGER.info("Successfully flipped image id: {}", file.getId());

  EVENT.addField("action.success", "true");

  return new ResponseEntity<>(flippedImage, headers, HttpStatus.OK);

}
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Comparing log and event output
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Key:Value makes data more accessible
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…and all within the same context
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…and easy to add more!



Better data structures supports more 

democratised debugging

Complex systems require a low friction way to add fields for added 

context and searchability and a way to combine technical context with 

business context

CustomerId: 2134354

AppVersion: 123

RequestUri: w
w

w.



@a_bangser

Pssst…

You heard of tracing?

That is just events with 

some extra IDs thrown in!
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Characteristics of valuable outputs

➔ raw events
➔ no pre-aggregation
➔ structured data
➔ arbitrarily wide events
➔ schema-less-ness
➔ high cardinality dimensions
➔ oriented around request lifecycle
➔ batched up context
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Debugging distributed 

systems is difficult

Especially when business impact is on 

the line. Let’s talk incident response.
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Hmmm, an automated alert
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Yup, definitely an issue!
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All hands on deck, what is happening…and why?
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2+ hrs later and still no idea!
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And it happens…again…and again…
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On call engineers are not amused
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But service owners were working hard!
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These were some awesome dashboards
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The dashboards showed a lot of detail
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And broke down different parameters
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They even helped reduce incident impact
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But human pattern matchers solved it
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So what happened to the new dashboards?
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They were sent to the farm…

with lots of friends



Why prioritise exploration?

Dashboards are the scar tissue of past 

incidents. Focus on learning about new 

behaviours and issues.
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These characteristics drive outcomes



So how can I get 

started?
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It depends on your context

● Remove pressure from your metrics by 
understanding their use case better

● Introduce more context to your log/event data?

● Shift from logs to events where it makes sense?

● Enable easier exploration instead of fancier 
dashboards?



@
a
_
b
a
n
g
s
e
r

Focus on outcomes.

Our desired outcomes are:

➔ Iterating quickly on feature development

➔ Debugging user issues

➔ Understanding usage patterns without 
putting user privacy at risk
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Iterate quickly on feature development

➔ Provide rich contextual information in our logs

➔ Default access to a logger
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Debug user issues

➔ Create a way to see / share logs easily

$ manager-logs
+ kratix-t55tw › manager
kratix-774b9b9d45-t55tw manager 2023-09-24T11:11:12Z        INFO    INFO    controllers.Promise.namespace   
Reconciling {"uid": "4556e", "promiseID": "namespace", "namespace": {"name":"example","namespace":"default"}, 
"resourceRequest": "namespace-example", "kind": "Job", "name": "configure-pipeline-namespace-6ff1e", 
"namespace": "default", "labels": 
{"kratix-promise-id":"namespace","kratix-promise-resource-request-id":"namespace-example","kratix-resource-hash":
"af2543d1e1e8b1a87dcbc8842252297c","kratix-workflow-action":"configure","kratix-workflow-kind":"pipeline.platform
.kratix.io","kratix-workflow-promise-version":"v1alpha1","kratix-workflow-type":"resource"}}
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Debug user issues

➔ Create a way to see / share logs easily

➔ Be intentional about “noise”
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Understand usage patterns without 

putting user privacy at risk

➔ Leverage the low cardinality of metrics
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Understand usage patterns without 

putting user privacy at risk

➔ Leverage the low cardinality of metrics

➔ Allow users to turn this off
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At the end of the day…

➔ Observability is a tool and each technique has its use 
cases and challenges.

➔ Data collection is not the goal and is not magic.

➔ Focus on outcomes and use observability to achieve 
them.
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