
Getting your automated tests in the pipeline
Hugh McCamphill | Test Lead | Glofox | @juegotester

Tests not in the
pipeline don’t make a
sound when they fail

12

Change lead time

Software Delivery Performance Metrics

Deployment frequency

Mean Time to Restore

Change failure rate

Deploying continuously reduces risk

Don’t automate manual
regression tests

Gaining trust

Photo by Marek Piwnicki on Unsplash

https://unsplash.com/@marekpiwnicki?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/trust?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Build

Static
Analysis

Unit /
Integration

Tests

Deploy
Dev

Deploy
Production

Deploy
Feature

Env

Good
Build?

Tests
Pass?

Simplified Pipeline

Acceptance
Testing

Monitoring

Build

Static
Analysis

Unit /
Integration

Tests

Deploy
Dev

Deploy
Production

Deploy
Feature

Env

Good
Build?

Tests
Pass?

Simplified Pipeline

Acceptance
Testing

MonitoringE2E Tests

Build

Static
Analysis

Unit /
Integration

Tests

Deploy
Dev

Deploy
Production

Deploy
Feature

Env

Good
Build?

Tests
Pass?

Simplified Pipeline

Acceptance
Testing

MonitoringE2E Tests Tests
Pass?

Maintaining
trust

Discover Impacted
Tests

Run new API Tests

Run new browser
tests * 10

Pull Request

git diff origin/master...$CIRCLE_BRANCH --name-only --diff-filter=AMR

npx jest --findRelatedTests

Test your tests

And wait….

Keep the run times short (ideally less than 10
minutes)

Running tests sequentially

● Libraries and frameworks to support running in parallel

● Create data as necessary

● Enough credentials to login in with

● Safe manipulation of shared data

Run tests in parallel

● Running the tests in
multiple machine
processes

● Running the tests
across multiple (virtual)
machines, eg – shard
tests in CI

https://www.artstation.com/artwork/r64nO

…benchmark data for 2020 again confirms that longer tests
directly lead to poor test quality, as tests that complete in
two minutes or less are nearly twice as likely to pass

Sauce Labs Continuous Testing Benchmark Report

Browser Driven Test

Start Login Add Member Purchase
Membership

Book
Member Into

Class
Assert

Browser Browser Browser BrowserBrowser

Using API for Setup and Assertion

Start Login Add Member Purchase
Membership

Book
Member Into

Class
Assert

Browser API Browser APIAPI

describe('Demo', () => {
 it('Should be able to book member into class', async () => {
 await Dashboard.login();

 await Classes.addClassTomorrowForSinglePriceClients({ className });
 await Membership.createSinglePaymentMembershipPlan({ membershipName, planName });

 const member = new Member();
 await Client.addClient({ member });
 await Client.purchaseMembership({ membershipName, planName });

 await Dashboard.bookClass({ member, className });

 await Dashboard.openClient({ member });
 await ClientToolbarComponent.clickTransactions();

 const transaction = await Transactions.getTransaction(`${className} booking`);
 await expect(transaction.amount).toHaveText('$10.00');
 });
});

describe('Demo', () => {
 it('Should be able to book member into class', async () => {
 await Dashboard.login();

 await Classes.addClassTomorrowForSinglePriceClients({ className });
 await Membership.createSinglePaymentMembershipPlan({ membershipName, planName });

 const member = new Member();
 await Client.addClient({ member });
 await Client.purchaseMembership({ membershipName, planName });

 await Dashboard.bookClass({ member, className });

 await Dashboard.openClient({ member });
 await ClientToolbarComponent.clickTransactions();

 const transaction = await Transactions.getTransaction(`${className} booking`);
 await expect(transaction.amount).toHaveText('$10.00');
 });
});

BROWSER

BROWSER

describe('Demo', () => {
 it('Should be able to book member into class', async () => {
 await Dashboard.login();

 await new Class(className).create();
 const membershipService = await new MembershipService().create();

 const member = new Member();
 await member.create().purchaseMembershipService(membershipService);
 await member.membership('ACTIVE');

 await Dashboard.bookClass({ member, className });

 const transaction = await member.transaction('ENTITY_BOOKED');
 expect(transaction.event_context.invoice_amount).toEqual(10);
 });
});

describe('Demo', () => {
 it('Should be able to book member into class', async () => {
 await Dashboard.login();

 await new Class(className).create();
 const membershipService = await new MembershipService().create();

 const member = new Member();
 await member.create().purchaseMembershipService(membershipService);
 await member.membership('ACTIVE');

 await Dashboard.bookClass({ member, className });

 const transaction = await member.transaction('ENTITY_BOOKED');
 expect(transaction.event_context.invoice_amount).toEqual(10);
 });
});

API

API

Demo

Maintaining
Tests

Photo by Markus Spiske on Unsplash

https://unsplash.com/@markusspiske?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/maintenance?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Do a GET Request and validate the response code and response body
 [documentation] This test case verifies that the response code of the GET Request should be
200,
 ... the response body contains the 'title' key with value as 'London',
 ... and the response body contains the key 'location_type'.
 [tags] Smoke
 Create Session mysession https://www.metaweather.com verify=true
 ${response}= GET On Session mysession /api/location/search/ params=query=london
 Status Should Be 200 ${response} #Check Status as 200

 #Check Title as London from Response Body
 ${title}= Get Value From Json ${response.json()}[0] title
 ${titleFromList}= Get From List ${title} 0
 Should be equal ${titleFromList} London

 #Check location_type is present in the response body
 ${body}= Convert To String ${response.content}
 Should Contain ${body} location_type

@Tag
Feature: Perform full demographic verification of a person

 Background:
 Given caller presents a valid access token

 Scenario: Perform full demographic verification with valid credentials
 Given a person with full demographic details
 | adhar_id | 123456789 |
 | full_name | John Doe |
 | dob | 31/12/1990 |
 | phone_no | 999999999999 |
 | email | john@doe.com |
 And the match threshold is set to 1.0
 When request is submitted for full demographic verification
 Then verify that the HTTP response is 200
 And a transaction id is returned

describe('Demo', () => {
 it('Should be able to book member into class', async () => {
 await defaultStudio().superAdmin.login();

 await new Class(className).create();
 const membershipService = await new MembershipService().create();

 const member = new Member();
 await member.create().purchaseMembershipService(membershipService);
 await member.membership('ACTIVE');

 await member.bookClass(className);

 const transaction = await member.transaction('ENTITY_BOOKED');
 expect(transaction.event_context.invoice_amount).toEqual(10);
 });
});

Focus on the what not the how for better abstractions

How

Gets / Posts / Puts / Deletes

Clicking buttons

Entering text

Selecting from drop downs

What

Page / Business objects

Domain Objects

Screenplay pattern

Where are we now

~ 900 tests, 650 API, 250 browser

17

Thanks!

