
Gáspár Nagy
coach • trainer • bdd addict • creator of specflow
“The BDD Books” series • http://bddbooks.com

@gasparnagy • gaspar@specsolutions.eu

Self-service quality
Everything I learned from open-source development that is applicable 

to enterprise development as well
HUSTEF

6th October, 2022



Copyright © Gaspar Nagy

This talk is…
…not about that you should use open-
source stuff – although that’s a good 

advice
…not about open-source business economics 

– although that is a great topic



Copyright © Gaspar Nagy

This talk is about 
stealing the secret of successful open-source 

projects for our own enterprise projects



Copyright © Gaspar NagyCopyright © Gaspar Nagy

bdd addict

given.when.then

CAUTION!

on the stage

Gáspár Nagy
coach, trainer and bdd addict
creator of SpecFlow

gaspar@specsolutions.eu

https://specsolutions.eu

@gasparnagy



Copyright © Gaspar Nagy

vs

• Random people

• No accountability

• Super-distributed

• Asynchronous communication

• Voluntary work

• Self-improvement

• Can produce quality work

• Employees in an org. hierarchy

• Accountability governed by 
contracts and law

• Co-located and distributed

• Synchronous and asynchronous 
communication

• Tasks assigned

• Coordinated learning & training

• Achieving expected quality is 
hard



Copyright © Gaspar Nagy

the key is…

Self-service



Copyright © Gaspar NagyCopyright © Gaspar Nagy

Approach

• Show differences and application of self-servicing by reviewing an open-source 
development process, by focusing on the quality
• Making changes (pull requests & co)

• Reach quality expectation of different quality aspects (CI/CD, review, etc.)

• Handling support cases

• Dealing with dependencies and releases

• Highlight ideas to steal



Copyright © Gaspar Nagy

Imagine an open-
source project

Where you are both user and contributor…

And keep comparing it with the project you work on, 

where you are both user and author of the components & tools 
you develop



Copyright © Gaspar NagyCopyright © Gaspar Nagy

Making changes through
pull requests



Copyright © Gaspar NagyCopyright © Gaspar Nagy

What is a pull request (PR)?

• “proposed changes” (GitHub)

• “a mechanism for a developer to notify team members that they have completed
a feature” (Atlassian)

• A feature to support integration of independent changes with the main 
development line

• PR evolved from a feature to a process over the years

• This process has many quality-related aspects



Copyright © Gaspar NagyCopyright © Gaspar Nagy

Integration – Merging parallel work



Copyright © Gaspar NagyCopyright © Gaspar Nagy

Pull Requests
Open Pull 
Request

CI Build Merge



Copyright © Gaspar NagyCopyright © Gaspar Nagy

Pull Requests
Open Pull 
Request

Verify

Merge



Copyright © Gaspar Nagy

Open-source pull request process

feature-branch

main

2. Check 
“Contribution 

Guide” and 
setup local env

1. Have an idea 
on how to 

improve the 
product



Copyright © Gaspar NagyCopyright © Gaspar Nagy

Idea: Contribution guide

• An all-in-one documentation to get up 
to speed

• Easy to find: Standard location,
included in the repository

• Also contains information about how 
to run the tests



Copyright © Gaspar Nagy

Open-source pull request process

feature-branch

main

PR#42
2. Check 

“Contribution 
Guide” and 

setup local env

3. Starts 
working on the 

idea

4. The solution 
gets shaped

5. Creates a 
“draft” PR

1. Have an idea 
on how to 

improve the 
product



Copyright © Gaspar NagyCopyright © Gaspar Nagy

Idea: Pull Request concept

• Pull requests can be used to pre-validate 
the solution (without being ashamed of a 
“public” failed build)

• They can be initiated (as “draft”) as soon 
as you have something to check –
encourages early verification, small steps 
(commits)

• The ALM tool configures a private 
temporary branch and a private temporary 
CI pipeline to verify the PR – no 
configuration efforts needed

• The project admins can control how the
PR pipeline should behave, but by default 
it just uses the CI pipeline as a template



Copyright © Gaspar Nagy

Open-source pull request process

feature-branch

main

PR#42

7. Feels like 
good enough

2. Check 
“Contribution 

Guide” and 
setup local env

3. Starts 
working on the 

idea

4. The solution 
gets shaped

5. Creates a 
“draft” PR

1. Have an idea 
on how to 

improve the 
product



Copyright © Gaspar Nagy

Many team members cannot contribute to 
quality

simply because they are hopeless with 
figuring out what is 

good enough



Copyright © Gaspar NagyCopyright © Gaspar Nagy

Breaking down the undefinable quality: 
quality aspects (sample)

Functional

• Works as 
expected

• Expectations 
are good

• Expectations 
are 
documented

Operational

• Secure

• Fast

• Convenient

• Pretty

• Consistent

• Predictable

Strategic

• Maintainable

• Architecture

• Code quality

• Easy to 
integrate

• Flexible

Source: Kevlin Henney



Copyright © Gaspar NagyCopyright © Gaspar Nagy

Idea: Quality checklist in PR template

• Some of the quality aspects can be 
automatically verified by the PR

• Some need human attention – the
things that are typically got forgotten

• The PR template can be configured in a 
way that it asks the contributor to go 
over the checklist and reminds them to 
complete all necessary quality steps

• Other information, like the type of 
change, related issues or its potential 
impact can also be collected in the 
same way



Copyright © Gaspar NagyCopyright © Gaspar Nagy

Idea: Check in integration, not in isolation

• Pull requests check the changes in 
integration with the base branch 
(main)

• They do not only check if your 
proposed changes are “good”, but also 
whether they are compatible with the 
ongoing changes on the main

• And they keep re-checking, always 
with the latest main

• This way they reduce the effort
required for merging at the end



Copyright © Gaspar Nagy

Open-source pull request process

feature-branch

main

PR#42

7. Feels like 
good enough

10. Review 
comments 

applied

2. Check 
“Contribution 

Guide” and 
setup local env

3. Starts 
working on the 

idea

4. The solution 
gets shaped

5. Creates a 
“draft” PR 8. Marks PR 

“ready for 
review”

9. Contributors 
provide review 

comments

1. Have an idea 
on how to 

improve the 
product



Copyright © Gaspar NagyCopyright © Gaspar Nagy

Idea: Asynchronous change review

• Conducting a review meeting where the 
changes are discussed is uncomfortable 
for many of us

• Public, asynchronous review discussions
leave enough time for everyone to 
consider the problem and respond 
accordingly

• Publicity might also help to avoid bullying 
or other non-appropriate behavior

• Asynchronous feedback is easier to 
schedule

• PR let’s you review the change against the 
latest main!



Copyright © Gaspar Nagy

Open-source pull request process

feature-branch

main

PR#42

7. Feels like 
good enough

10. Review 
comments 

applied

12. PR gets 
merged

2. Check 
“Contribution 

Guide” and 
setup local env

3. Starts 
working on the 

idea

4. The solution 
gets shaped

5. Creates a 
“draft” PR 8. Marks PR 

“ready for 
review”

11. PR gets 
approved

9. Contributors 
provide review 

comments

1. Have an idea 
on how to 

improve the 
product



Copyright © Gaspar NagyCopyright © Gaspar Nagy

When an issue comes



Copyright © Gaspar NagyCopyright © Gaspar Nagy

Idea: Let the issue creator do the tracking

• When an issue comes with unclear 
circumstances it is hard to classify the 
issue and decide on the severity

• Many open-source projects use some
“auto-close” model – they close the issue
ticket once they cannot progress with it. It 
becomes the responsibility of the issue 
creator to re-open if more information is 
available

• Some projects auto-close the issues 
automatically after some idle time (e.g. 60 
days) – if we could not solve it in 60 days, 
probably we will not solve it.

• These strategies might sound rude, but 
with good communication they help a lot



Copyright © Gaspar NagyCopyright © Gaspar Nagy

Idea: Extend documentation instead of 
answering the issue

• Many open-source project keeps the 
documentation in source control 
editable with simple tools (e.g. using 
Markdown format)

• This might encourage contributors to 
extend the documentation (and 
respond with a link) instead of 
responding with long details (if the 
question is of general interest)

• You don’t need to wait for the second 
issue of the same topic to create a 
separate ticket for extending the 
documentation.



Copyright © Gaspar NagyCopyright © Gaspar Nagy

When it’s time to release



Copyright © Gaspar NagyCopyright © Gaspar Nagy

Idea: Make dependencies trackable

• Open-source project use standardized
package management tools to track their
dependencies (e.g. npm, NuGet, Maven, 
etc.)

• As their dependencies are trackable it is
easier to discover (or even visualize) 
dependencies – that is also very useful for 
impact analysis of a bug

• In some cases there are even some 
automatic tooling that can fix dependency 
problems (e.g. security alerts)

• These package management tools can also 
be hosted on premises, so you can also 
track your internal components in the 
same way



Copyright © Gaspar NagyCopyright © Gaspar Nagy

Idea: Use changelog & semantic versioning

• The users of open-source libraries have to 
make decisions about upgrading on their 
own

• Detailed changelogs can help and avoid
unnecessary issues being created

• By using semantic versioning
(https://semver.org/) the users (or even 
tools) can make decisions when it is safe 
to update a particular dependency
• “Given a version number 

MAJOR.MINOR.PATCH, increment the:
• MAJOR version when you make 

incompatible API changes
• MINOR version when you add functionality 

in a backwards compatible manner
• PATCH version when you make backwards 

compatible bug fixes”

https://semver.org/


Copyright © Gaspar NagyCopyright © Gaspar Nagy

Idea: Automate release process

• Automating the release process is very 
important for open-source projects, 
because
• Multiple people might need to be able to 

release
• There might be calm periods when there is 

no release – manual processes are forgotten
• There might be a need for fast reaction (e.g. 

hotfixes)

• Automating the release might also
improve security, because
• Individuals don’t need to have the publish

keys on their laptops
• Repeatable releases can be used to protect 

against injection attacks 



Copyright © Gaspar Nagy

Wrap up



Copyright © Gaspar Nagy

What can we learn from open-source development?

Verification Feedback

Avoiding conflicts

Rollback

Embracing conflicts

Roll forward



Copyright © Gaspar NagyCopyright © Gaspar Nagy

Ideas to steal…

• Contribution guide

• Pull Request concept

• Quality checklist in PR template

• Check in integration, not in isolation

• Asynchronous change review

• Let the issue creator do the tracking

• Extend documentation instead of answering the issue

• Make dependencies trackable

• Use changelog & semantic versioning

• Automate release process



Copyright © Gaspar Nagy

Learn how to self-service quality!

• Feladatok • Lehetőségek



Gáspár Nagy
coach • trainer • bdd addict • creator of specflow
“The BDD Books” series • http://bddbooks.com

@gasparnagy • gaspar@specsolutions.eu



Copyright © Gaspar NagyCopyright © Gaspar Nagy


